The Philippine Statistician
Vol. xxvi, Nos. 3 \& 41977

SAMPLING CONSIDERATION FOR DISEASES WITH LOW PREVALENCE

By ILDEFONSO T. CRUZ ${ }^{1}$ and ELIZABETH TAN ${ }^{3}$

An important consideration in the planning of a survey is sample size determination. And in this process the usual question which evolves following thoughtful statistical deliberations bears upon how large a sample should be studied in order for the results to meet certain requirements, such as specified precision of estimates for parameters of interest. To the practitioners of the sampling art and to most administrators of survey projects, this is a very crucial question since it is evidently wasteful to have too large a sample, and useless to have one which is too small. A rational answer, as if to underscore its importance, is not always easy to find for in the majority of cases, we do not possess enough information to guide us in the choice of a sample size which could be considered "best" in some sense, on account of our lack of knowledge about certain properties of the underlying population. Nevertheless the usual and most immediate objective of an investigation for setting sample size is the determination of a minimum number of units to constitute the sample so as to fulfill certain specifications, such as the desired precision or non-exceedence of error we are willing to tolerate in the estimates.

Now in a situation where the condition to be studied is relatively rare in the population, the main interest may not be in the estimation of the minuscule prevalence per se, but in ascertaining how extensive the sampling should be so that there will be a good chance of discovering at least one or a specified number of cases. The important considerations relative to this type of sampling outlook appears to be the following:
(i) the raser the prevalence of the disease or condition, the more difficult it is to encounter a case, and

[^0](ii) even with a very large sample, there is always a non-zero probability that not even a single case will be seen, with this probability increasing markedly as the prevalence goes down.

In this context therefore, one can only talk of probabilities of including at least one or a specified number of cases in any given sample.

A more precise formulation of the problem then is: What must be the size of a study group from a large population in order to achieve a high probability, say, not less than 1-o (e.g. 95% or $\propto-.05$), so that
(i) at least one case is included in the sample, or more generally, so that
(ii) at least r cases ($r>1$) are present in the sample?

METHODOLOGY

Some Results From Binomial Sampling

In.sampling problems involving a disease of a given prevalence, say p, the number X of cases found in a sample of size n follows a binomial distribution. This is true regardless of whether p is small or not, provided n is small relative to the size of the population so that sampling is in effect, with replacement. On this basis formulas for minimum n which will yield at least m cases, with probability $(1-\propto)$ or more, are derived as follows:

$$
\begin{equation*}
P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}, x=0,1,2, \ldots, n . \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
P(X<m)=\sum_{x=0}^{m-1}\left(\frac{n}{x}\right) p^{x}(1-p)^{n-x} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
P(X \geqslant m)=1-\sum_{x=0}^{m-1}\left(\frac{n}{x}\right) p^{x}(n-x)^{n-x} \geqslant 1-\alpha \tag{3}
\end{equation*}
$$

as specified.

For $m=1$, the solution for n turns out to be a closed expression obtained as follows:

$$
\begin{gather*}
 \tag{4}\\
 \tag{5}\\
 \tag{6}\\
\text { Hence } \quad \\
\text { i.e. } 1-(1-p)^{n} \geqslant 1-\alpha \\
n=1-\alpha, \\
n
\end{gather*}
$$

where the sign ">" has been omitted with the understanding that n here is the smallest sample size to achieve the problem specifications.

For $m=2$, the value of n will be given by the solution to

$$
\begin{equation*}
(1-p)^{n-1}(1-p+n p)=\alpha, \tag{7}
\end{equation*}
$$

and for the general case where $m=r, n$ is the solution to the equation

$$
\begin{equation*}
(1-p)^{n}+\left(\frac{n}{1}\right)(1-p)^{n-1} p+\ldots+\left(r_{r}^{n}-1\right)(1-p)^{n-r+1} 1_{p}^{r-1}=\alpha . \tag{8}
\end{equation*}
$$

It will be noted that when $m=1$, the solution is straightforward. When m exceeds 1 , the equations have to be solved by trial and error or by some iterative procedure, such as the method of false position or the more popular Newton-Raphson technique. Since the labor involved in the process of iteration increases tremendously with every rise in m , the only practicable way is through a computerized approach. Several such trials were made in solving (3); the Newton-Raphson method in particular turned out to be feasible at the lower levels of m . However, a serious underflow problem cropped up at the higher values, since n will be large correspondingly and hence, a number of infinitesimal magnitude results when p (which is itself assumed to be rather small) is raised to a large exponent. An alternative approach is to use the Poisson approximation, which in this case turns out to be extremely accurate in view of the low levels stipulated for \mathbf{p}. In addition, there is considerable simplication of the equations used in the iteration process, together with the disappearance to a large enough degree, of the underflow problem encountered earlier.

The methodology for this alternative is developed more fully in the next section.

The Use of the Poisson Approximation

The binominal distribution with parameters n and p, under the circumstances where n approaches infinity and p approaches zero but such that $n \mathrm{p}$ remains constant, say equal to λ, approximately obeys the Poisson probability law with parameter $\lambda=\mathrm{np}$; that is

$$
\begin{equation*}
P(X=x)=\left(\frac{n}{x}\right) p^{x}(1-p)^{n-x} \approx e^{-\lambda} \lambda^{x} / x! \tag{9}
\end{equation*}
$$

Then $\operatorname{Pr}(X<m)=\sum_{x=0}^{m=1}\left(\frac{n}{x}\right) p^{x}(1-p)^{n-x} \approx \sum_{x=0}^{m-1} e^{-\lambda} \lambda^{x} / x$!
for any fixed integers $x=0,1,2, \ldots \ldots$
This leads to results parallel to those of equations (6), (7) and (8). Thus for
i) $\mathrm{m}=1$,

$$
\mathrm{e}^{-\lambda}=\alpha
$$

or

$$
\begin{equation*}
\mathrm{n}=-\ln \alpha / \mathrm{p} . \tag{11}
\end{equation*}
$$

Note that this reduces to equation (6) with the use of the wellknown approximation $1 \mathrm{n}(1-\mathrm{p}) \approx-\mathrm{p}$ for small p .
ii) $m=2, n$ is calculated from

$$
\begin{equation*}
\overline{\mathbf{e}}^{\lambda}(1+\lambda)=\alpha \tag{12}
\end{equation*}
$$

or $\quad \ln (1+\lambda)-\lambda-\ln \alpha=0$;
iii) $\mathrm{m}=\mathrm{r}, \mathrm{n}$ is the solution to the equation

- $e^{-\lambda}\left\{1+\lambda+\lambda^{2} / 2!+\lambda^{3} / 3+\ldots+\lambda^{m-1} /(m-1)!\right\}=\alpha$
or
$\ln \left\{1+\lambda+\lambda^{2} / 2!+\ldots+\lambda^{-1} /(r-1)!\right\}-\lambda-\ln \alpha=0$.
Looking at the general case (case iii) it may be noted that (14)
is easily expressed in terms of an incomplete Γ-function ratio ${ }^{3}$, since

$$
\begin{align*}
e^{-\lambda}[1+\lambda & \left.+\lambda^{2} / 2!+\ldots+\lambda^{m-1} /(m-1)!\right] \\
& =1-\int_{0}^{\lambda} u^{m-1} e^{-u} d u / \int_{0}^{\infty} u^{m-1} e^{-u} d u \\
& =1-I(\lambda / \sqrt{m}, m-1) \tag{16}
\end{align*}
$$

where, using Pearson's notation for the ratio,

$$
\begin{equation*}
I(\lambda / \sqrt{m}, m-1)=\int_{0}^{\lambda} u^{m-1} e^{-u} d u / \int_{0}^{\infty} u^{m-1} e^{-u} d u \tag{17}
\end{equation*}
$$

Thus we may restate (14) as

$$
\begin{equation*}
I(\lambda / \sqrt{m}, m-1)=1-\alpha \tag{18}
\end{equation*}
$$

Unfortunately, this result, while seemingly elegant leads to a laborious process which does not circumvent the repetitive nature of the calculations even with the use of tables. Thus computerization of this procedure does not appear to be promising nor practicable. Another approach is the development of a Newton-Raphson routine to the iterative solution of equation (15). An outline for this is as follows:

Let $F(\lambda)=\ln \left\{1+\lambda+\lambda^{2} / 2!+\ldots+\lambda^{r-1} /(r-1)!\right\}-\lambda-\ln \alpha$.
Then $F^{\prime}(\lambda)=\partial F / \partial \lambda=-\lambda^{r-1} /\left[(r-1)!\left[1+\lambda+\lambda^{2} / 2!+\ldots+\lambda^{r-1} /(r-1)!\right\}\right]$

If λ_{i} is a provisional root of $F(\lambda)$ then a better approximation is given by

$$
\begin{equation*}
\lambda_{i+1}=\lambda_{i}+\delta\left(\lambda_{i}\right) \tag{21}
\end{equation*}
$$

where $\delta\left(\lambda_{\mathfrak{j}}\right)=-F\left(\lambda_{\mathfrak{j}}\right) / F^{\prime}\left(\lambda_{\mathfrak{j}}\right)$, an additive correction applied to the provisional root λ_{i} to arrive at the next iterate. $F\left(\lambda_{i}\right)$ and $F^{\prime}\left(\lambda_{i}\right)$ are understood to be values of the functions $F(\lambda)$ and $F^{\prime}(\lambda)$ evaluated at the point λ_{i}. As the process continues, we obtain a succession of approximations which should converge to the real root. Under convergence conditions, the difference between λ_{i} and $\lambda_{i}+1$, i.e. $\left|\lambda_{i}+1-\lambda_{i}\right|$, diminishes rapidly as i increases and a practical opegrating rule is to terminate the iteration when $\left|\lambda_{i}+1^{-} \lambda_{i}\right|$ becomes less than some small number, here taken to be 10^{-6}. The choice of the starting value λ_{0} is oftentimes critical in keeping the number of iterations down to a reasonable level. In this case it was found that taking $\lambda_{0} \approx 1.8 \mathrm{~m}$ will hold that number to a value less than 10. A detailed investigation revealed, at the least for the first few cases, that there will be no problems in attaining convergence.

A FORTRAN - IV computer program based on the New-ton-Raphson solution was developed and values of n were generated at the IBM 360 facility at the U.P. Computer Center at Diliman. A compilation of the results is shown in Tables 1 and 2, for stated values of the prevalence p and number of cases m, at ($1-\propto$) levels of 90% and 95%.

To see how close the approximation is to the exact results from the binomial, the example below is worked out, using analogous equations (6) and (11).

For $p=10 / 100,000=.0001$ and $\propto=.05$,

$$
\begin{aligned}
& \mathrm{n}=29,955.8 \text { by equation (6) while equation (11) yields } \\
& \mathrm{n}=29,957.3 .
\end{aligned}
$$

These values do not differ by any appreciable degree.

SAMPLING FOR DISEASEŚ Ẅith LóW prévialenće

DISCUSSION

The sample size n may be read directly from the tables for listed levels of p and m . However not all intervening values between the limits chosen for these parameters are given and therefore in the applications, we need to note if
(i) the number of cases m and prevalence p are both listed in the table or
(ii) the desired number of cases is given while the specified p is not,
(iii) both m and p are unlisted in the tables.

If it is (i) then the sample size may be read directly from the table,* while if it. is (ii) we need to use the relation $n=\hat{\lambda} / \mathrm{p}$ in solving for n, where $\hat{\lambda}$ is the solution obtained for λ at that particular m. Case (iii) can be handled by interpolation but a better method is fashioned on the basis of the observation that the plot of λ on m is nearly linear on double logarithmic paper, notably in the range $\mathrm{m} \geqslant 10$, where the estimation for non-tabulated n will be necessary. The charts shown in figures 1 and 2 show that extent of this linearity for α levels of 5% and 10% respectively. Least squares fitting applied to $\log \lambda$ on $\log m$ yielded the equations

$$
\begin{equation*}
\ddot{\lambda}_{\mathrm{m}}=2.014013 \mathrm{~m} 0.878967 \tag{22}
\end{equation*}
$$

for $\alpha=.05$, and

$$
\begin{equation*}
\hat{\lambda}_{\mathrm{m}}=1.723966 \mathrm{~m} 0.9059051 \tag{23}
\end{equation*}
$$

for $\alpha=.10$.
These may be used for estimating λ for $m \geqslant 10$, from which n is easily obtained. As an example, consider the situation where p is thought to be around $5 / 100,000$ and it is desired to draw a_{j} sample which will yield at least 16 cases at the .95 probability level. Since $\mathrm{m}=16$ is not tabulated, we use (22) to estimate λ.

Thus $\hat{\lambda}_{16}=2.014013(16)^{0.878967}=23.03796$,
and $n=(23.03796 / 5) \quad 100,000=46076$,
a. result which appears quite reasonable when compared to the nearest tabular entries.

A general idea of how far the results of this procedure compare with the computer-generated values may be obtained by taking an m for which the sample size can be read directly from tables 1 (or 2) and then applying the above procedure to get a parallel estimate for n. Thus from Table 1 for $m=20$ and $p=5 / 100,000, n=557,585$. On the other hand equation (22) yields

$$
\hat{\lambda}_{20}=2.014013 \quad(20) .878967 \quad=28.0301
$$

and

$$
\mathrm{n}=(28.0301 / 5) \quad 100,000=560,602
$$

The percentage error is
$560,602-557,585) / 557,585=.54 \%$, which appears to be tolerable considering the levels of sample size requirements involved.

AN APPLICATION

One of the important developments in the health scenario in recent years is the increasing attention devoted to cancer research and control, resulting in improved survival rates of patients. There has been a noticeable rise in the rates since the 1960's and this is continuing into the present decade. In fact, the prognosis of patients with certain forms of cancer is considerably brighter now than ten years ago. These improvements are due to developments in surgical and supportive techniques, in radio theraphy and in diagnostic procedures. Indeed one of the recognized measures for the effective control of cancer is by prevention and prophylactic treatment of invasive forms. In order to achieve this, accurate and practicable diagnostic tests were and are still being developed. Now the clinical usefulness of such a test rests on the attainment of a happy balance between its so-called sensitivity and its specificity, for, an insensitive test gives too many negative results for the disease it is supposed to pick up while a non-specific test gives many positive results among individuals free of the disease it is supposed to diagnose.

Many diagnostic tests suffer from at least one of the above shortcomings. Hence the evaluation of the usefulness of a particular diagnostic test requires careful study - a study which
by its very nature has to deal with a broad base of subjects and thus transcend the clinic level out into the realm of statistics.

Lingao et. al (1975) ${ }^{4}$ proposed a modified Alpha-Fetoprotein (AFP) test for the diagnosis of primary hepatoma (liver cancer). In their report, an attempt to assess the sensitivity and specificity of the test was made. Some 753 patients were subjected to the test and the results were reported prior to the diagnoses of the attending physicians. Of these patients only 119 proceeded to a state where conclusive diagnoses for various illnesses were arrived at, either by autopsy, exploratory surgery or needle biopsy. The study centered on this latter group of patients so that there can be no question as to the correctness of diagnosis.

In discussing the results of this and similar studies it is convenient to introduce the following notation:

Let D be the event that a person has the disease in question, say hepatoma,
$\overline{\mathrm{D}}$ the event that he does not have the disease,
T the event that he gives a positive AFP test results, and T the event that he gives a negative test response.

If the test is applied to samples of individuals known to have the disease (D 's) and not to have the disease ($\overline{\mathrm{D}}$'s), the results may be displayed in the following manner:

GROUP	AFP TEST RESULTS	
	Positive T	Negative \bar{T}
Sick (D)	$\mathrm{P}(\mathrm{T} / \mathrm{D})$	$\mathrm{P}(\overline{\mathrm{T}} / \mathrm{D})$
Not Sick ($\overline{\mathrm{D}})$	$\mathrm{P}(\mathrm{T} / \overline{\mathrm{D}})$	$\mathrm{P}(\overline{\mathrm{T}} / \overline{\mathrm{D}})$

where $\mathrm{P}(\mathrm{T} / \mathrm{D})=$ probability of a positive test result given that the individual has the disease,

[^1]$P(\bar{T} / \bar{D})=$ probability of a negative test given that the individual does not have the disease.

The other conditional probabilities are interpreted in a similar manner.

* Let $\mathrm{P}(\mathrm{D})$ be the unconditional probability or proportion of the population who are sick (prevalence of the disease),
$P(T)$ be the overall proportion responding positive to the test.

With these formulation we can now lay down more formal definitions of the concepts of sensitivity and specificity of a diagnostic test: ($\mathrm{P}(\mathrm{T} / \mathrm{D}$) is sensitivity and expresses the ability of the test to pick up those who are really sick. Specificity on the other hand is $\mathrm{P}(\overline{\mathrm{T}} / \overline{\mathrm{D}})$, which measures the ability of the test to detect an individual who is in reality free of the disease. In practice, greater concern is placed on the error rates associated with the diagnostic test if it were to be used in a survey or a screening program. This in turn leads to a lot of misconceptions among many researchers, particularly in the health field, since misclassification is of serious dimensions usually when the overall prevalence of the disease is low. The problem is compounded when one attempts to use the findings of the test to estimate this prevalence in a survey.

The initial difficulty is on sample size. In the case of hepatoma, no reliable figures on prevalence for the Philippines are available and one has to rely on data from other Asiatic populations published elsewhere and spotty reports of local investigations. It appears from these sources that a resonable fix on the overall prevalence of liver cancer is anywhere from $10 / 100,000$ to $45 / 100,000$ population. Suppose it is $30 / 100,000$ and the investigator wants to see at least 15 cases. From Table 2, it is seen that he will need about 73,000 (72,955 exactly) to attain this minimum yield with 95% assurance. Many health researchers will be amazed (if not shocked) by this seemingly voluminous requirement and the reason is not too difficult to see. Most of them have been trained in if not actually working within the confines of a hospital or medical laboratory and hence are accustomed to applying a diagnostic test to individuals who are at least suspected, if not clinically identified, as having the disease. They are thus conditioned to
seeing the test pick out a lot of cases among individuals which are in many respects highly selected. They need therefore some orientation on what the performance would be if the test is tried out under field conditions and the findings of this study, notably, Tables 1 and 2, provide useful information which will now allow most to appreciate the situation from that perspective.

Having gotten around this problem, the next one is concerned about the nature of the yield of the test. And here, in the case of low prevalence disease, it appears that the specificity becomes very crucial.

Going back to the 119 patients with confirmed diagnoses, 67 turned out to have primary hepatoma while the rest (52) were found to have other diseases. The findings are summarized below:

RESULTS OF MODIFIED AFP TEST ON 119 PATIENTS WITH CONFINED DIAGNOSES

DISEASE STATUS	AFP TEST		Total
Hepatoma	57	10	67
Non-hepatoma	9	43	52
Total	66	53	119

Thus,

> sensitivity $=(57 / 67) \quad 100=85.1 \%$, and
> specificity $=(43 / 52) \quad 100=82.7 \%$

Some caution should be exercised in projecting this specificity estimate to field conditions, since the non-hepatoma group appeared to be overloaded with other liver conditions which, though non-primary liver cancer, nevertheless yield weak but positive AFP test. There is therefore some grounds to suspect underestimation of specificity in this case. This is further supported by a run of negative test results on a series of 10 healthy subjects reported in the same study. Thus perhaps a more realistic estimate, though possibly stil on the low side, is

$$
((43+10) /(52+10)) \times 100=85.5 \%
$$

with the inclusion of the healthy group of indivduals tested. It is interesting to note in this regard that the standard AFP
test proved to be very specific in hands of other workers. ${ }^{5}$
To see what sort of difficulty arises with the use of the test with the assumption of specificity even up to the level of $85.5=$ as recomputed, consider the problem above in its original context where a requisite sample of 73,000 individuals is to be tested. ${ }^{6}$ The expectation here is at least 15 primary hepatoma cases. The total number of positive results expected is

$$
\begin{aligned}
& 15 \times \text { sensitivity level }+(73,000-15) \\
& \times(1=\text { specificity level) } \\
& =15(0.851)+72,985(1-0.855) \\
& =15+10,583 \\
& =10,596,
\end{aligned}
$$

of which the larger component $(10,583)$ constitute the false positives. Hence the proportion of false positives, or false positivity rate is

$$
\frac{10,583}{10,596} \times 100=99.9 \%
$$

Therefore, nearly all positives are false positives, in this situation where a moderately specific test is applied in a mass survey for low prevalence disease. There is serious misclassification error in this direction. The false negatives, on the other hand, will not be much of a problem since the total negative results expected is

$$
\begin{aligned}
& 15(1 \text {-sensitivity) }+(73,00-15) \text { (specificity) } \\
= & 2+62,402 \\
= & 62,404
\end{aligned}
$$

of which only 2 (the smaller component) are false.

[^2]TABLE. 1. MINIMUM SAMPLE SIZE' WHICH WILL YIELD WITH 90% PROBABILITY THE STATED NUMBER OF CASES OR MORE, FOR VARIOUS LEVELS OF EXPECTED PREVALENCE

No. of Cases
.$\lambda \lambda$
2.3026
3.8897
5.3223
6.6808
7.9936
9.2747
10.5321
11.7709
12.9947
14.2060
20.1280
25.9025
31.5836
37.1985
42.7685
48.2891
53.7825
59.2490
64.6926
70.1163
75.5226
80.9135
86.2906
91.6553
97.0087
102.3518
107.6855
113.0105

TABLE 1. MINIMUM SAMPLE SIZE WHICH WILL YIELD WITH 90% PROBABILITY THE STATED NUMBER OF CASES OR MORE; FOR VARIOUS LEVELS OF EXPECTED PREVALENCE

No. of Cases

$\boldsymbol{\lambda}$	M	50	55	60
2.3026	1	4605	4187	3838
3.8897	2	7779	7072	6483
5.3223	3	10645	9677	8871
6.6808	4	13362	12147	11135
7.9936	5	15987	14534	13323
9.2747	6	18549	16863	15458
10.5321	7	21064	19149	17553
11.7709	8	23542	21402	19618
12.9947	9	25989	23627	21658
14.2060	10	28412	25829	23677
20.1280	15	40256	36596	33547
25.9025	20	51805	47096	43171
31.5836	25	63167	57425	52639
37.1985	30.	74397	67634	61998
42.7685	35	85527	77752	71273
48.2891	40	96578	87798	80482
53.7825	45	107565	97786	89638
59.2490	50	118498	107725	98748
64.6926	55	129385	117623	107821
70.1163	60	140233	127484	116860
75.5226	65	151045	137314	125871
80.9135	70	161827	147115	134856
86.2906	75	172581	156892	143818
91.6553	80	183311	166646	152759
97.0087	85	194017	176379	161681
$102 . .3518$	90	204704	186094	170586
107.6855	95	215371	195792	179476
113.0105	100	226021	205474	188351

EXPECTED PREVALENCE, CASES $/ \mathbf{1 0 0 , 0 0 0}$

65	70	75	80°	85	90
3542	3289	3070	2878	2709	2558
- 5984	5557	5186	4862	4576	4322
8188	7603	7096	6653	6262	5914
10278	9544	8908	8351	7860	7423
12298	11419	10658	9992	9404	8882
14269	13250	12366	11593	10911	10305
16203	15046	14043	13165	12391	11702
18109	16816	15695	14714	13848	13079
19992	18564	17326	16243	15288	14439
21855	20294	18941	17757	16713	15784
30966	28754	26837	25160	23680	22364 :
39850	37004	34537	32378	30474	28781
48590	45119	42111	39479	37157	35093
57228	53141	49598	46498	43763	41332
65790	61091	57018	53454	50310	47515
74291	68984	64385	60361	56811	53655.
82742	76832	71710	67228	63274	59758.
91152	84641	78999	74061	69705	65832
99527	92418	86257	80866	76109	71881
107871	100166	93488	87645	82490	77907
116189	107889	100697	94403	88850	83914.
124482	115591	107885	101142	95192	89904
132755	123272	115054	107863	101518	95878
141008	130936	122207	114569	107830	101839
149244	138584	129345	121261	114128	107787
157464	146217	136469	127940	120414	113724.
165670	153836	143581	134607	126689	119651
173862	161444	150681	141263	132954	125567 .

TABLE 1. MINIMUM•SAMPLE SIZE WHICH WILL YIELD WITH 90% PROBABILITY THE STATED NUMBER OF CASES OR MORE, FOR VARIOUS LEVELS OF EXPECTED PREVALENCE

$$
\begin{array}{r}
\lambda \\
\vdots . \\
2.3026 \\
3.8897 \\
5.3223 \\
6.6808 \\
7.9936 \\
9.2747 \\
10.5321 \\
11.7709 \\
12.9947 \\
14.2060 \\
20.1280 \\
25.9025 . \\
31.5836 \\
37.1985 \\
42.685 \\
48.2891 \\
53.7825 \\
59.2490 \\
64.6926 \\
70.1163 \\
75.5226 \\
80.9135 \\
86.2906 \\
91.6553 \\
97.0087 \\
102.3518 \\
107.6855 \\
113.0105
\end{array}
$$

EXPECTED PREVALENCE, CASES $/ 100,000$

200	250	300	350	400	500
.1151	921	768	658	576	461
1945	$\cdot \mathrm{C} 556$	1297	1111	972	778
2661	2129	1774	1521	1331	1064
3340	2672	2227	1909	1670	1336
3997	3197	2665	2284	1998	1599
4637	3710	3092	2650	2319	1855
5266	4213	3511	3009	2633	2106
5885	4708	3924	3363	2943	2354
6497	5198	4332	3713	3249	2599
7103	5682	4735	4059	3552	2841
10064	8051	6709	5751	5032	4026
12951	10361	8634	7401	6476	5181
15792	12633	10528	9024	7896	6317
18599	14879	12400	10628	9300	7440
21382	17105	14255	12218	10691	8553
24145	19316	16096	13797	12072	9658
26891	21513	17928	15366	13446	10757
29625	23700	19750	16928	14812	11850
32346	25877	21564	18484	16173	12939
35058	28047	23372	20033	17529	14023
37761	30209	25174	21578	18881	15105
40457	32365	26971	23118	20228	16183
43145	34516	28764	24654	21573	17258
45826	36662	30552	26187	22914	18331
48504	38803	32336	27717	24252	19402
51176	40941	34117	29243	25588	20470
53843	43074	35895	30767	26921	21537
56505	45204	37670	32289	28253	22602

TABLE 2. MINIMUM SAMPLE SIZE WHICH WILL YIELD WITH 95% PROBABILITY THE STATED NUMBER OF CASES OR MORE, FOR VARIOUS LEVELS OF EXPECTED PREVALENCE

\because	\because
	$: \quad$

No. of Cases
λ
λ
.2 .9957
4.7439
6.2958
7.7537
9.1535
10.5130
11.8424
13.1481
14.4347
15.7052
21.8865
27.8792
33.7524
39.5410
45.2656
50.9397
56.5726
62.1711
67.7401
73.2837
78.8050
84.3065
89.7903
95.2582
100.7117
106.1520
111.5801
116.9971

EXPECTED PREVALENCE, CASES $/ 100,000$

20	25	30	35
14979	11983	9986	8559
23719	18975	15813	13554
31479	25183	20986	17988
38768	31015	25846	22153
. 45768	36614	30512	26153
- 52565	42052	35043	30037
59212	47370	39475	33835
65741	52592	43827	37566
72173	57739	48116	41242
78526	62821	52351	44872
109432	87546	72955	62533
139396	111517	92931	79655
168762	135010	112508	96435
197705	158164	131803	112974
226328	181063	150885	129330
254699	203759	169799	145542
282863	226291	188575	161636
310855	248684	207237	177632
338700	270961	225800	193543
366418	293135	244279	209382
394025	315220	262683	225157
421532	337226	281022	240876
448952 -	359162	299301	256544
476291	381033	317527	272166
503558	402847	335706	287748
530760	424608	353840	303291
557901	446321	371934	318800
584986	467989	389990	334278

40	45
7489	6657
11860	10542
15739	13991
19384	17230
22884	20341
26283	23362
29606	26316
32870	29218
36087	32077
39263	34900
54716	48637
69698	61954
84381	75005
98852	87869
113164	100590
127349	113199
141432	125717
155428	138158
169350	150534
183209	162853
197012	175122
210766	187348
224476	199534
238146	211685
251779	223804
265380	235893
278950	247956
292493	259994

TABLE 2. MINIMUM SAMPLE SIZE WHICH WILL YIELD WITH 95% PROBABILITY THE STATED NUMBER OF CASES OR MORE, FOR VARIOUS LEVELS OF EXPECTED PREVALENCE

No. of Cases
EXPECTED PREVALENCE, CASES $/ 100,000$

λ	M	50	55	60	65	70	75	80	85	90
2.9957	1	5991	5447	4993	4609	4280	3994	3745	3524	3329
4.7439	2	9488	8625	7906	7298	6777	6325	5930	5581	5271
6.2958	3	12592	11447	10493	9686	8994	8394	7870	7407	6995
7.7537	4	15507	14098	12923	11929	11077	10338	9692	9122	8615
9.1535	5	18307	16643	15256	14082	13076	12205	11442	10769	10171
10.5130	6	21026	19115	17522	16174	15019	14017	13141	12368	11681
11.8424	7	23685	21532	19737	18219	16918	15790	14803	13932	13158
13.1481	8	26296	23906	21914	20228	18783	17531	16435	15468	14609
14.4347	9 10	28869	26245	24058	22207	20621	19246	18043	16982	16039
15.7052 21.8865	10 15	31410 43773	28555 39794	26175	24162 33672	22436	20940	19632	18477	17450
27.8792	15	43773 55758	39794 50690	36477 46465	33672 42891	31266 39827	29182 37172	27358	25749	24318
33.7524	25	67505	61368	56254	51927	39827 48218	37172 45003	34849 42191	32799 39709	30977 37503
39.5410	30	79082	71893	65902	60832	56487	52721	49426	36519	37503 43934
45.2656	35	90531	82301	75443	69639	64665	60354	56582	53254	50295
50.9397	40	101879	92618	84900	78369	72771	67920	63675	69929	56600
56.5726 62.1711	45	113145	102859	94288	87035	80818	75430	70716	66556	62858
62.1711 67.7401	50 55	124342 135480	113038	103618	95648	88816	82895	77714	73142	69079
73.2837	50 60	146567	123164	112900	104216 112744	96772 104691	90320	84675	79694	75267
78.8050	65	157610	143282	131342	121238	104691	97712 105073	91605 98506	86216 92712	81426 87561
84.3065	70	168613	153285	140511	129702	120438	112409	105383	99184	87561 93674
$\begin{aligned} & 89.7903 \\ & 95.2582 \end{aligned}$	75 80	179581	163255	149651	138139	128272	119720	112238	99184 105636	93674 99767
95.2582 $\mathbf{1 0 0 . 7 1 1 7}$	80	190517	173197 183112	158764	146551	136083 143874	127011	119073	112069	105842
106.1520	90	21.2304	183004 ,	167853 176920	154941 .163311	143874 151646	134282	125890	118484	111902
111.5801	95	223160	202873 '	185967	$\because \cdot 163166$	151646	141536	132690 139475	124885	117947
116.9971	100	233994	212722	194995	179996	167139	155996	146246	131271	$\begin{aligned} & 123978 \\ & 129997 \end{aligned}$

TABLE 2. MINIMUM SAMPLF, SITF WHYMH WILI, VIFLN WITH 95\% PROBABILITY THE STATED NUMBER
OF CASES OR MORE, FOR VARIOUS LEVELS OF EXPECTED PREVALENCE
No. of Cases

M	95	100
1	3153	2996
2	4994	4744
3	6627	6296
4	8162	7754
5	9635	9154
6	11066	10513
7	12466	11842
8	13840	13148
9	15194	14435
10	16532	15705
15	23038	21886
20	29347	27879
25	35529	33752
30	41622	39541
35	47648	45266
40	53621	50940
45	59550	56573
50	65443	62171
55	71305	67740
60	77141	73284
65	82953	78805
70	88744	84306
75	94516	89790
80	100272	95258
85	106012	100712
90	111739	106152
95	117453	111580
100	123155	116997

150

1997
3163
4197
5169
6102
7009
7895
8765
9623
10470
14591
18586
22502
26361
30177
33960
37715
41447
45160
48856
52537
56204
59860
63505
67141
70768
74387
77998

200	250	300	350	400
1498	1198	999	856	749
2372	1898	1581	1355	1186
3148	2518	2099	1799	1574
3877	3101	2585	2215	1938
4577	3661	3051	2615	2288
5257	4205	3504	3004	2628
5921	4737	3947	3384	2961
6574	5259	4383	3757	3287
7217	5774	4812	4124	3609
7853	6282	5235	4487	3926
10943	6755	7295	6253	5472
13940	11152	9293	7965	6970
16876	11501	11251	9644	8438
19770	15816	13180	11297	9885
22633	18106	15089	12933	11316
25470	20376	16980	14554	12735
28286	22629	18858	16164	14143
31086	24868	20724	17763	15543
33870	27096	22580	19354	16935
36642	29313	24428	20938	18321
39402	31522	26268	22516	19701
42153	33723	28102	24088	21077
44895	35916	29930	25654	22448
47629	38103	31753	27217	23815
50356	40285	33571	28775	25178
53076	42461	35384	30329	26538
55790	44632	37193	31880	27895
58499	46799	38999	33428	29249

:

[^0]: ${ }^{1}$ Professor and Chairman, Department of Epidemiology and Biostatistics, Instituto of Public Health, University of the Philippines Systom.

 2 Mastor of Statistics, 1977.

[^1]: .4. Lingao, Augusto et al. "A Modified Alpha-Fetoprotein Test for the Diagnosi, "of 'Primary Hepatoma," Phil. Jour. Internal Medicine, Volume 13, (July-September 1975) pp. 109.123.

[^2]: 5 See for instance, Application of Serum Alpha Feto-Protein in Mass Survey of Primary Carcinoma of the Liver. The co-ordinating Group for the Research of Liver Cancer, People's Republic of China, Am. J. Chinese Med. 2,: No. 3, pp. 241-245, 1974.
 © An appeal to Bayes' theorem at this point would have led to a more rigid presentation and the same findings, but the simplified approach adopted here appears to be more understandable in on intuitive sense.

